LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

THIRD SEMESTER – **NOVEMBER 2013**

PH 3505/PH 3503 – THERMODYNAMICS

(10x2=20)

[4.5].

[4.5]

[3]

 Date : 08/11/2013
 Dept. No.

 Time : 9:00 - 12:00
 Max. : 100 Marks

<u>PART – A</u>

Answer **ALL** the questions:

- 1. State the basic assumption made in the kinetic theory of gases.
- 2. Calculate the average kinetic energy of an air molecule at 27.
- 3. Write down the equation of state for an ideal gas when it undergoes a reversible, (i) isothermal and (ii) adiabatic changes.
- 4. Define Super fluidity.
- 5. The internal energy of an ideal gas does not change with its volume why?
- 6. State the second law of thermodynamics.
- 7. Define Helmholtz and Gibbs functions.
- 8. State the condition for two phases to be in equilibrium.
- 9. Define thermodynamic probability.
- 10. State Wien's displacement law.

R=8.3J/mol.-K.

<u>PART – B</u>

Answer ANY FOUR questions:	(4x7.5=30)	
11. (a) Define mean free path.(b) Obtain an expression for the mean free path. State your assumptions clearly.	[2] [5.5]	
12. Discuss Andrew's experiment on CO_2 . Cooling.		
13. a) Define intensive and extensive variables with examples.	[3]	
b) One mole of a gas, assumed to be perfect, at $0^{\circ}C$ is heated at constant pressure till its volume is twice its initial value. Calculate the amount of heat absorbed. Given $C_v = 20.9$ J/molK and		

14. Obtain the following expression for the Joule-Kelvin coefficient,

$$\mu = \frac{T^2}{C_P} \left(\frac{\partial}{\partial T} \left(\frac{V}{T}\right)\right)_P.$$

- 15. a) Define phase space, microstate and macrostate.
 - b) How many ways can 3 particles be distributed among 4 states according to the two statistics.

<u>PART – C</u>		
Answer ANY FOUR questions	(4x12.5=50)	
16. a) Define Brownian motion.	[2]	
b) Discuss the Langevin's theory of Brownian motion.	[10.5]	
17. a) Explain Clement and Desormes method for determining $\gamma = \frac{C_P}{C_V}$.	[9.5]	
b) Given $C_V = 20.3 \text{ J/molK}$ and R =8.3 J/molK, calculate γ the ratio of specific heats.	[3.0]	
18. a) Derive the Clausius-Clayperon equation involving the latent heat.	[6]	
b) Derive the Clausius inequality.	[6.5]	
19. a) Obtain the expression for the change in the entropy of an ideal gas.	[7.5]	
b) One moles of an ideal gas occupies 10 liters of volume at 4 atm. The gas is heater volume till its pressure is 8atm. Then it is allowed to expand at constant pressure volume is 40 liters, calculate the change in its entropy. Given $C_V = 3$ cal/mol-K at	. If its final	
cal/mole-K.	[5]	

20. Outline the Plande's quantum theory of Black body radiation. Hence establish wien's displacement law and Stefan's law.

\$\$\$\$\$\$\$